TWG-97-39

�Federal Public Key Infrastructure (PKI)

Version 1 Technical Specifications :

Part E - X.509 Certificate and CRL Extensions Profile

July 7, 1997

Prepared By :

BOOZïALLEN & HAMILTON INC.

900 Elkridge Landing Road

Linthicum, Maryland 21090

�Table of Contents

Page No.

� TOC \o "1-4" \t "AppendixHead,7,AppendixHead1,8" �0 Introduction	� GOTOBUTTON _Toc392923996 � PAGEREF _Toc392923996 �1��

0.1 Structure	� GOTOBUTTON _Toc392923997 � PAGEREF _Toc392923997 �1��

0.2 Acronyms	� GOTOBUTTON _Toc392923998 � PAGEREF _Toc392923998 �2��

0.3 References	� GOTOBUTTON _Toc392923999 � PAGEREF _Toc392923999 �3��

1 V3 Certificates	� GOTOBUTTON _Toc392924000 � PAGEREF _Toc392924000 �4��

1.1 Base X.509 Certificate Processing	� GOTOBUTTON _Toc392924001 � PAGEREF _Toc392924001 �4��

1.2 Certificate Extensions	� GOTOBUTTON _Toc392924002 � PAGEREF _Toc392924002 �6��

1.2.1 authorityKeyIdentifier	� GOTOBUTTON _Toc392924003 � PAGEREF _Toc392924003 �7��

1.2.1.1 Generation Requirements	� GOTOBUTTON _Toc392924004 � PAGEREF _Toc392924004 �7��

1.2.1.2 Processing Requirements	� GOTOBUTTON _Toc392924005 � PAGEREF _Toc392924005 �8��

1.2.2 subjectKeyIdentifier	� GOTOBUTTON _Toc392924006 � PAGEREF _Toc392924006 �8��

1.2.2.1 Generation Requirements	� GOTOBUTTON _Toc392924007 � PAGEREF _Toc392924007 �8��

1.2.2.2 Processing Requirements	� GOTOBUTTON _Toc392924008 � PAGEREF _Toc392924008 �8��

1.2.3 keyUsage	� GOTOBUTTON _Toc392924009 � PAGEREF _Toc392924009 �8��

1.2.3.1 Generation Requirements	� GOTOBUTTON _Toc392924010 � PAGEREF _Toc392924010 �8��

1.2.3.2 Processing Requirements	� GOTOBUTTON _Toc392924011 � PAGEREF _Toc392924011 �9��

1.2.4 privateKeyUsagePeriod	� GOTOBUTTON _Toc392924012 � PAGEREF _Toc392924012 �9��

1.2.5 certificatePolicies	� GOTOBUTTON _Toc392924013 � PAGEREF _Toc392924013 �9��

1.2.5.1 Generation Requirements	� GOTOBUTTON _Toc392924014 � PAGEREF _Toc392924014 �10��

1.2.5.2 Processing Requirements	� GOTOBUTTON _Toc392924015 � PAGEREF _Toc392924015 �10��

1.2.6 policyMappings	� GOTOBUTTON _Toc392924016 � PAGEREF _Toc392924016 �10��

1.2.6.1 Generation Requirements	� GOTOBUTTON _Toc392924017 � PAGEREF _Toc392924017 �10��

1.2.6.2 Processing Requirements	� GOTOBUTTON _Toc392924018 � PAGEREF _Toc392924018 �11��

1.2.7 subjectAltName	� GOTOBUTTON _Toc392924019 � PAGEREF _Toc392924019 �11��

1.2.7.1 Generation Requirements	� GOTOBUTTON _Toc392924020 � PAGEREF _Toc392924020 �11��

1.2.7.2 Processing Requirements	� GOTOBUTTON _Toc392924021 � PAGEREF _Toc392924021 �11��

1.2.8 issuerAltName	� GOTOBUTTON _Toc392924022 � PAGEREF _Toc392924022 �11��

1.2.8.1 Generation Requirements	� GOTOBUTTON _Toc392924023 � PAGEREF _Toc392924023 �11��

1.2.8.2 Processing Requirements	� GOTOBUTTON _Toc392924024 � PAGEREF _Toc392924024 �12��

1.2.9 subjectDirectoryAttributes	� GOTOBUTTON _Toc392924025 � PAGEREF _Toc392924025 �12��

1.2.10 basicConstraints	� GOTOBUTTON _Toc392924026 � PAGEREF _Toc392924026 �12��

1.2.10.1 Generation Requirements	� GOTOBUTTON _Toc392924027 � PAGEREF _Toc392924027 �13��

1.2.10.2 Processing Requirements	� GOTOBUTTON _Toc392924028 � PAGEREF _Toc392924028 �13��

1.2.11 nameConstraints	� GOTOBUTTON _Toc392924029 � PAGEREF _Toc392924029 �13��

1.2.11.1 Generation Requirements	� GOTOBUTTON _Toc392924030 � PAGEREF _Toc392924030 �13��

1.2.11.2 Processing Requirements	� GOTOBUTTON _Toc392924031 � PAGEREF _Toc392924031 �14��

1.2.12 policyConstraints	� GOTOBUTTON _Toc392924032 � PAGEREF _Toc392924032 �14��

1.2.12.1 Generation Requirements	� GOTOBUTTON _Toc392924033 � PAGEREF _Toc392924033 �14��

1.2.12.2 Processing Requirements	� GOTOBUTTON _Toc392924034 � PAGEREF _Toc392924034 �14��

1.2.13 cRLDistributionPoints	� GOTOBUTTON _Toc392924035 � PAGEREF _Toc392924035 �14��

1.2.13.1 Generation Requirements	� GOTOBUTTON _Toc392924036 � PAGEREF _Toc392924036 �15��

1.2.13.2 Processing Requirements	� GOTOBUTTON _Toc392924037 � PAGEREF _Toc392924037 �15��

1.3 Certificate Path Development	� GOTOBUTTON _Toc392924038 � PAGEREF _Toc392924038 �15��

1.3.1 Path Development Procedures	� GOTOBUTTON _Toc392924039 � PAGEREF _Toc392924039 �15��

1.4 Certification Path Processing Procedure	� GOTOBUTTON _Toc392924040 � PAGEREF _Toc392924040 �16��

2 Version 2 CRLs	� GOTOBUTTON _Toc392924041 � PAGEREF _Toc392924041 �18��

2.1 CRL Extensions	� GOTOBUTTON _Toc392924042 � PAGEREF _Toc392924042 �21��

2.1.1 authorityKeyIdentifier	� GOTOBUTTON _Toc392924043 � PAGEREF _Toc392924043 �21��

2.1.2 issuerAltName	� GOTOBUTTON _Toc392924044 � PAGEREF _Toc392924044 �21��

2.1.3 CRLNumber	� GOTOBUTTON _Toc392924045 � PAGEREF _Toc392924045 �22��

2.1.4 reasonCode	� GOTOBUTTON _Toc392924046 � PAGEREF _Toc392924046 �22��

2.1.5 holdInstructionCode	� GOTOBUTTON _Toc392924047 � PAGEREF _Toc392924047 �22��

2.1.6 invalidityDate	� GOTOBUTTON _Toc392924048 � PAGEREF _Toc392924048 �22��

2.1.7 certificateIssuer	� GOTOBUTTON _Toc392924049 � PAGEREF _Toc392924049 �23��

2.1.8 issuingDistributionPoint	� GOTOBUTTON _Toc392924050 � PAGEREF _Toc392924050 �23��

2.1.9 deltaCRLIndicator	� GOTOBUTTON _Toc392924051 � PAGEREF _Toc392924051 �24��

3 V3 Certificate And V2 CRL Profile	� GOTOBUTTON _Toc392924052 � PAGEREF _Toc392924052 �25��

3.1 Support Classification	� GOTOBUTTON _Toc392924053 � PAGEREF _Toc392924053 �25��

3.1.1 Static Capability	� GOTOBUTTON _Toc392924054 � PAGEREF _Toc392924054 �25��

3.1.2 Dynamic Behavior	� GOTOBUTTON _Toc392924055 � PAGEREF _Toc392924055 �26��

3.2 Base Certificate	� GOTOBUTTON _Toc392924056 � PAGEREF _Toc392924056 �27��

3.2.1 Algorithm Identifier	� GOTOBUTTON _Toc392924057 � PAGEREF _Toc392924057 �27��

3.2.2 Extensions	� GOTOBUTTON _Toc392924058 � PAGEREF _Toc392924058 �28��

3.2.2.1 Standard Extensions	� GOTOBUTTON _Toc392924059 � PAGEREF _Toc392924059 �28��

3.3 CRL	� GOTOBUTTON _Toc392924060 � PAGEREF _Toc392924060 �32��

3.3.1 CRL Extensions	� GOTOBUTTON _Toc392924061 � PAGEREF _Toc392924061 �32��

3.3.1.1 CRL Extension Syntax	� GOTOBUTTON _Toc392924062 � PAGEREF _Toc392924062 �33��

3.3.2 CRL Entry Extensions	� GOTOBUTTON _Toc392924063 � PAGEREF _Toc392924063 �33��

3.3.2.1 CRL Entry Extension Syntax	� GOTOBUTTON _Toc392924064 � PAGEREF _Toc392924064 �33��

APPENDIX A DSA Parameter Processing	A-� GOTOBUTTON _Toc392924065 � PAGEREF _Toc392924065 �1��

APPENDIX B Key Encryption Algorithm Certificate Processing	B-� GOTOBUTTON _Toc392924066 � PAGEREF _Toc392924066 �1��

�

�Introduction

This document specifies the Federal Public Key Infrastructure (FPKI) Version 3 (V3) X.509 certificates and Version 2 (V2) Certificate Revocation Lists (CRL) as described in the Draft Amendments (DAM) for Certificate Extensions. Implementation guidance is provided for certificate generation entities (e.g., Certification Authority [CA]) and certificate processing entities (e.g., User Agent [UA]). Throughout this document the term ìCAî will represent any implementation that can create certificates; the term ìauthorizationsî will be defined as the clearances and privileges asserted in user certificates by a CA.

V3 X.509 certificates contain the identity and attribute data of a subject using the base certificate with applicable extensions. The base certificate contains such information as the version number of the certificate, the certificateís identifying serial number, the signature algorithm used to sign the certificate, the issuerís distinguished name, the validity period of the certificate, the distinguished name of the subject, and information about the subjectís public key. To this base certificate is appended numerous certificate extensions. This document describes and stipulates those extensions which are required for FPKI-compliant systems. More detailed information about X.509 certificates can be found in Recommendation X.509.

Structure

The document is divided into three sections. Sections 1 and 2 describe the V3 certificates and the V2 CRLs, respectively. These sections describe the extensions implemented by FPKI including the values contained in FPKI certificates, CRLs, and extensions, as well as the recommended interpretation of the extensions. Guidance is provided to indicate those extensions that may be added to FPKI certificates and CRLs. This guidance is not intended to require the extensions be present in every certificate (except as specifically indicated). In addition, section 2 also describes the validation process for CRLs and Indirect CRLs (ICRLs). Section 3 specifies the FPKI profile for the V3 X.509 certificate and V2 CRLs. This profile lists the protocol elements FPKI CAs must generate to add extensions to a certificate and the protocol elements FPKI certificate processing entities must understand if the extension is to be processed properly. Finally, Appendix A discusses the processing of algorithm identifiers and the ìpî, ìgî, and ìqî parameters used within the Digital Signature Algorithm (DSA).

�Acronyms

ASN.1 	Abstract Syntax Notation 1

CA	Certification Authority

CRL	Certificate Revocation List

DN	Distinguished Name

DSA	Digital Signature Algorithm

DSS	Digital Signature Standard

EE	End Entity

FPKI	Federal Public Key Infrastructre

ICRL	Indirect Certificate Revocation List

ITU-T	International Telecommunications Union Telecommunications Sector

KEA	Key Exchange Algorithm

OID	Object Identifier

PRBAC	Partition Rule Based Access Control

RFC	Request For Comments

UA	User Agent

V2	Version 2

V3	Version 3

�References

[1] Final Text of Draft Amendments DAM 4 to ISO/IEC 9594-2, DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7, and DAM 1 to ISO/IEC 9594-8 on Certificate Extensions, Draft, 30 June 1996.

[2] ISO/IEC 9594-8: Information Technology - Open Systems Interconnection - The Directory: Authentication Framework (Also ITU-T Recommendation X.509).

[3] SDN.701, Message Security Protocol 4.0 (MSP), 1997-06-07.

[4] SDN.702: Abstract Syntax for Utilization with Common Security Protocol (CSP), Vesion 3 X.509 Certificates and Version 2 Certificate Revocation Lists, Revision 1 of Prototype Baseline, 1 May 1997.

[5] SDN.706, X.509 Certificate and Certificate Revocation List Profiles and Certificate Path Processing Rules for the Multilevel Information Systems Security Initiative, Revision 3.0, 1997-05-30.

[6] SDN.801, Access Control Concepts and Mechanisms, Revision 3.0, 1997-05-30.

[7] Technical Corrigendum 2 to ISO/IEC 9594-8: 1990 & 1995(E).

[8] ITU-T Recommendation X.690, Information Technology - ASN.1 Encoding Rules -

Specification of Basic Encoding Rules, Canonical Encoding Rules and

Distinguished Encoding Rules.

[9] Public Key Infrastructure (PKI) Technical Specifications (Version 2.2): Part C - Concept of Operations, TWG-96-100, 20 November 1996.

[10] Internet Public Key Infrastructure, Part I: X.509 Certificate and CRL Profile, Internet Draft.

�V3 Certificates

CAs create certificates for user authentication procedures that require one user to obtain another userís public key. So that users trust the public key, the CA employs a digital signature to cryptographically sign certificates and provide assurance that the information within the certificate is correct. The fields in a certificate identify the issuer (i.e., CA), subject (i.e., user), version number, subjectís public key, validity period, and serial number of the certificate along with the public key algorithm used to certify the certificate. A CA may also add certificate extensions containing additional information about the user or the CA (see section 1.2) depending on the implementation.

This document stipulates the required certificate and CRL format for FPKI-compliant programs. Any specific program implementing certificate-based public key cryptography, and claiming compliance to the Federal Public Key Infrastructure requirements is required to tailor its X.509 certificates within the parameters outlined within this document.

The Distinguished Encoding Rules (DER) allow several methods for formatting UTCTime and GeneralizedTime. It is important that all implementations use the same format to minimize signature verification problems. To ensure that UTCTimes are consistently formatted, FPKI-compliant software must format all UTCTimes included in ASN.1 syntaxís that are encoded using the DER using the 'Z' format and must never omit the "seconds" field (even when it is '00') (i.e., the format shall be YYMMDDHHMMSSZ). This format is consistent with the SC21-proposed correction to the DER. For consistency with DER, GeneralizedTime may be of any format described in ITU-T Rec. X.690.

Through the remainder of this document, requirements for generation and processing of particular extensions are applied. The application of requirements is segmented into three types of certificates: a self-signed ìroot CAî certificate, the CA (which will include Subordinate CAs [SCAs]) certificate, and the End Entity (EE) certificate.

Base X.509 Certificate Processing

FPKI CAs shall, for all certificates:

include the version field with an integer value� of 2 to indicate that the certificate is a version 3 certificate;

include the serialNumber field with an integer value to indicate the certificateís serial number;

include in the signature field the identifier (OID) of the algorithm used to sign the certificate, but not populate the parameters in this field;

include the issuer field with the X.500 distinguished name of the CA who created the certificate;

include the validity field with the time period for which the certificate is considered valid;

include the subject field with the X.500 distinguished name of the subject to whom the certificate was issued;

if the subjectís DSA parameters are different from the certificate issuerís DSA parameters then they are included in the SubjectPublicKeyInfo algorithm parameters field. For DSA X.509 certificates, the DSA public key will be ASN.1 encoded as an INTEGER which is then encapsulated with the SubjectPublicKeyInfo subjectKey BIT STRING;

omit the issuerUniqueIdentifier and subjectUniqueIdentifier fields;

use the Parametized Type as defined in X.500 to sign the certificate (the DSA parameters shall not be included in the SIGNED MACRO algorithm identifier field); and

include the extensions field and extensions as described in section 1.2. The following definition for Extensions is described in the Technical Corrigendum 2 to Recommendation X.509:

		Extensions ::= SEQUENCE of Extension

			

		Extension ::= SEQUENCE {

			extnId		EXTENSION.&id ({ExtensionSet}),

			critical		BOOLEAN DEFAULT FALSE,

			extnValue	OCTET STRING

					-- contains a DER encoding of a value of type and ExtnType

					-- for the extension object identified by extnId -- }

		-- The X.509 DAM 9594-8 specifies a list of extensions that may be

		-- included in V3 X.509 certificates and CRLs. ExtensionSet includes the

		-- object identifiers for the valid extensions. The set is required to specify a table

		-- constraint on the critical component of Extension.

		ExtensionSet	EXTENSION ::= { 2 5 29 35 | 2 5 29 14 | 2 5 29 15 | 2 5 29 16 |

						 2 5 29 32 | 2 5 29 33 | 2 5 29 17 | 2 5 29 18 |

						 2 5 29 9 | 2 5 29 19 | 2 5 29 30 | 2 5 29 34 |

						 2 5 29 31 | 2 5 29 20 | 2 5 29 21 | 2 5 29 23 |

						 2 5 29 24 | 2 5 29 28 | 2 5 29 29}	

		EXTENSION ::= CLASS {

			&id		OBJECT IDENTIFIER UNIQUE,

			&ExtnType	}

		WITH SYNTAX {

			SYNTAX		&ExtnType

			IDENTIFIED BY	&id }

Certificate path processing begins with a trusted public key and associated parameters which are obtained in a trusted manner. The trusted key must be maintained in a manner to insure it integrity.

For each certificate in the path, certificate processing entities shall:

attempt to validate the signature of the certificate;

process fields generated by a FPKI CA as identified in the certificate profiles;

ignore the issuerUniqueIdentifier and subjectUniqueIdentifier fields if they are present; and

process the extension fields, if present, as described within Sections 1.2 and 1.4 of this document.

Certificate Extensions

V3 certificates provide a mechanism for CAs to append additional information about the subjectís public key, issuerís public key, and issuerís CRLs. Standard certificate extensions are defined for V3 X.509 certificates. It is not required that all the extensions be used by FPKI, however all the extensions are included here to insure completeness. Table 3.2.2 provides guidance regarding FPKI extension usage. These extensions provide methods of increasing the amount of information the X.509 certificate conveys to facilitate automated certificate processing. The following sections describe how these extensions are implemented. Note that four attributes are defined within the Subject Directory Attributes extension, and are described in Section 1.2.9. These attributes may be used to implement access control, if desired, and are based on the Partition Rule Based Access Control (PRBAC) scheme defined by MISSI (see [6]).

As described in Section 12.1 of the DAM and repeated here, an extension is flagged as being either critical or non-critical. If an extension is flagged critical and a certificate-using system does not recognize the extension field type or does not implement the semantics of the extension, then that system shall consider the certificate invalid. If an extension is flagged non-critical, a certificate-using system that does not recognize or implement that extension type may process the remainder of the certificate ignoring the extension.

In the FPKI all certification paths start from a public key contained in a ìroot-CA certificate.î A root-CA certificate:

is self-signed, that is, signed with the private key corresponding to the public key contained in the subject public key field of the certificate;

contains any needed parameters in the subject public key info field, where the digital signature algorithm used in the certificate requires the use of parameters;

contains few or no extensions;

is kept in protected memory or otherwise protected from alteration by an intruder;

is transferred to the application or certificate using system in an authenticated manner. The signature on the root-CA Certificate cannot authenticate the certificate.

The FPKI Concept of Operations defines a Federal PKI with several administrative hierarchies of CAís. At the top of each of these hierarchies is an administrative ìroot CA.î These root CAs are cross-certified with each other. Moreover, in the hierarchies, subordinate CAs not only are issued certificates by their superior CA in the hierarchy, they also cross-certify with their superior CA.

A consequence of this PKI topology is that any certificate using system can use a root CA certificate issued by any CA in the FPKI to start itís certification paths, provided the certificate using system trusts that CA and has an authenticated copy of its root CA certificate. That root-CA certificate may be issued by one of the administrative root CAs, described above, but it may also be issued by the ìlocalî CA that issued the certificate using system its own end entity certificate, or by any other CA in the FPKI. Which root-CA certificates may be used by agency certificate using systems to start certification paths is a matter of agency security policy.

Any certificate using system in the FPKI can view any CA in the FPKI as the root CA for starting certification paths, provided:

the certificate using system has an authenticated copy of the root-CA certificate, and,

local agency security policy allows the use of that root-Ca certificate.

Agencies will designate the CAs whose root-CA certificates may be used by certificate using systems within the agencncy, and establish the approved mechanisms for obtaining the authenticated root-CA certificates.

authorityKeyIdentifier

This non-critical extension identifies the public key used to verify the signature on a certificate. It enables distinct keys used by the same CA to be differentiated. This extension may hold an explicit key identifier, or an explicit certificate identifier. This extension is useful when a CA uses more than one key (e.g., when the CA key is re-keyed). Use of this extension may provide improved efficiency when attempting to locate a specific certificate. Since this extension is only viewed as an efficiency enhancing extension, it is not required that certificate processing entities be capable of processing this extension. However, use of this extension is highly encouraged, and thus, FPKI CAs shall be capable of populating this extension as described below.

Generation Requirements

FPKI CAs shall:

include the extension in all CA and EE certificates;

not include the extension in the self-signed certificate;

omit the authorityCertIssuer and authorityCertSerialNumber fields; and,

include the authorityKeyIdentifier field with a unique identifier for the CAís material (the subject key identifier of the issuerís certificate).

Processing Requirements

There are no requirements for FPKI implementations to process this extension, though it is encouraged that certificate processing entities be capable of recognizing the authorityKeyIdentifier field as the identifier of the certification authorityís key used to sign the certificate.

subjectKeyIdentifier

This non-critical extension identifies the public key being certified. It enables distinct keys used by the same subject to be differentiated. This extension may hold the explicit key identifier, and is useful when a subject uses more than one key. This extension is required in the self-signed as a result of the possibility that several Root-CAs will coexist. Similar to the previous extension, this extension is viewed as an efficiency enhancing extension, and thus, certificate processing entities are not required to provide this capability. However, use of this extension is highly encouraged, and thus, it is required the FPKI CAs be capable of populating this extension as described below.

Generation Requirements

FPKI CAs shall:

include this extension in all certificates including the self-signed certificate; and,

include the subjectKeyIdentifier as a SHA-1 hash of the certificateís public key.

Processing Requirements

There are no requirements for FPKI implementations to process this extension, though it is encouraged that certificate processing entities be capable of recognizing the subjectKeyIdentifier field as the identifier of the public key being certified.

keyUsage

This critical extension indicates the purposes for which the certified public key is used. It may be implemented as either a critical or a non-critical extension. The KeyUsage field includes bit values used for digital signature verification for purposes other than non-repudiation, certificates, or CRLs; digital signature for non-repudiation; enciphering keys or other security information; enciphering user data; a key agreement mechanism; a CA to sign certificates; and a CA to sign CRLs.

Generation Requirements

FPKI CAs shall:

set the criticality flag to ìtrue;î

include the extension in all CA and EE;

not include the extension in self-signed certificates; and

indicate the appropriate key usage according to the following matrix of valid key usage combinations (note: valid combinations appear as columns in the table):

Key Usages�Valid

Combinations��digitalSignature����x*��nonRepudiation����x*��keyEncipherment�x�����dataEncipherment��x����keyAgreement���x���keyCertSign����x*��cRLSign����x*��* Any subset combination of these key usages is also valid

It is further recommended that when the public key is to be used for confidentiality that key usages keyEncipherment and keyAgreement be assigned in the following manner:

For RSA, use keyEncryption;

For Diffie-Hellman and its variants, use keyAgreement;

For KEA, use keyAgreement.

Processing Requirements

FPKI certificate processing entities shall interpret the keyUsage bits as described in Recommendation X.509, Section 12.2.2.3 (which states, "If the extension is flagged critical, then the certificate shall be used only for a purpose for which the corresponding key usage bit is set to one.").

privateKeyUsagePeriod

This non-critical extension indicates the period of use of the private key corresponding to the certified public key. It is applicable only for digital signature certificates. This extension is only useful when a trusted time stamp mechanism is available to compare the date of signature of a message to the validity period included within this extension. Since no such mechanism is currently available, support of this extension is optional.

certificatePolicies

This extension lists certificate policies that the certificate is expressly recognized as supporting, together with optional qualifier information pertaining to these policies. It may be implemented as either a critical or a non-critical extension. This field is processed during the certification path validation as described in Section 1.4. The certificate policy indicates the procedures under which the certificate was created.

Generation Requirements

FPKI CAs that generate this extension shall:

set the criticality flag to ìfalse;î

include the extension in all CA and EE certificates;

include the PolicyInformation field(s) with the applicable policyIdentifier field(s); and

include the OID(s) for the applicable certificate policy in the policyIdentifier field(s).

Processing Requirements

FPKI certificate processing entities shall:

process the PolicyInformation field(s) as a collection of policyIdentifier field(s);

process the certificate policy OID(s) in the policyIdentifier field(s); and

process the policyQualifierIds id-pkix-cps and id-pkix-unotice (see [10]).

When validating a FPKI certification path, FPKI applications must set the initial-explicit-policy indicator to TRUE. Except for the Root-CA certificate, every FPKI X.509 certificate will include the policyConstraints extension with the requireExplicitPolicy field set with SkipCerts set to zero. Therefore, when processing FPKI certification paths, the FPKI certificate processing entity must reject any certificate that doesnít include one of the acceptable set of policy identifiers (as described in Section 1.4) in the policyIdentifier field (except for the Root-CA certificate).

policyMappings

This non-critical extension allows a certificate issuer to indicate that one or more of that issuerís certificate policies is considered equivalent to another policy used in the subject CAís domain. The assignment of policy mappings is restricted to CA. This is enforced through the policyConstraints extension (Section 1.2.12). This extension will support cross-certification and hold the OIDs of equivalent policies.

Generation Requirements

FPKI CAs shall:

generate this extension for applicable CA digital signature certificates; and

include a combination of issuerDomainPolicy field(s) and subjectDomainPolicy field(s) with the applicable CertPolicyId field(s).

Processing Requirements

FPKI certificate processing entities shall interpret the combination(s) of issuerDomainPolicy OID and subjectDomainPolicy OID as equivalent. The policies may be added to the applicable policies state variable during certificate path validation as described in Section 1.4.

subjectAltName

This extension provides a name that is bound by the Root-CA or CA to the subjectís certified public key. It may be implemented as either a critical or a non-critical extension. This extension should only be included when the Root-CA or CA chooses to stipulate use of alternate names.

Generation Requirements

FPKI CAs shall:

set the criticality flag to ìfalse;î

not include this extension in self-signed certificates;

generate this extension for applicable CA and EE certificates; and

be capable of populating GeneralName with types dNSName, directoryName, or uniformResourceIdentifier.

Processing Requirements

Though the FPKI has no requirements for generating alternative names, the FPKI shall provide processing support for other communities that support alternative names. FPKI certificate processing entities shall:

apply the Name Constraints (as described in the Name Constraints and Certification Path Processing Procedure sections) to this extension as part of the certification path validation process;

if this extension is flagged critical, then reject the certificate that does not include a directoryName in the GeneralName SEQUENCE; and

if this extension is flagged non-critical, then the GeneralNames SEQUENCE does not need to include a directoryName.

issuerAltName

This extension provides a name, in a form other than that of distinguished name, for the certificate issuer. It may be implemented as either a critical or a non-critical extension.

Generation Requirements

FPKI CAs shall:

set the criticality flag to ìfalse;î

not include this extension in self-signed certificates;

generate this extension for applicable CA, EE, and Cross certificates; and

be capable of populating GeneralName with types dNSName or uniformResourceIdentifier.

Processing Requirements

Though the FPKI has no requirements for generating alternative names, the FPKI shall provide processing support for other communities that support alternative names. FPKI certificate processing entities shall:

if this extension is flagged critical, then FPKI certificate validation software must reject a certificate that does not include a directoryName in the GeneralName SEQUENCE; and

if this extension is flagged non-critical, then the General Names does not need to include a directoryName.

subjectDirectoryAttributes

This non-critical extension may convey any desired directory attribute values for the subject of the certificate.

A syntax has been defined by the Multilevel Information System Security Initiative (MISSI) to use this extension to carry access control related information. It is recommended that Federal CAs desiring to convey clearances, citizenship or other access control information, use the syntax defined by MISSI. CAs not needing to convey authorizations in X.509 certificates need not populate the subjectDirectoryAttributes field.

The type of access control mechanism implemented by MISSI is referred to as Partition Rule-Based Access Control (PRBAC). The latest revisions of the following documents should be referenced for implementation of PRBAC: SDN.702, SDN.706, and SDN.801.

No other attributes have been defined for this extension.

basicConstraints

This extension indicates whether the subject may act as a CA using the certified public key to sign certificates. If so, a certification path length constraint may also be specified. This extension may be implemented as either a critical or a non-critical extension.

This extension is required in all signature certificates. Since processing of this extension in a ìtrustedî certificate is at the discretion of the implementer, the implementer may choose to create applications to require every certificate in a certification path, including the "trustedî certificate, to assert that they are a CA within a basic constraints extension. For this reason, this extension shall be included in all self-signed and CA certificates Since the processing of this extension in the self-signed certificate is not considered critical and it is not the intent to have certificate processors reject this certificate for not processing the ìtrustedî certificate, it is indicated as ìnon-criticalî within the self-signed certificate.

Generation Requirements

FPKI CAs shall:

include this extension in all self-signed, CA, and EE digital signature certificates;

set the criticality flag to ìtrueî in CA and EE certificates;

set the criticality flag to ìfalseî in self-signed certificates;

set the CA Boolean flag to ìTrueî for self-signed and CA certificates, and enter a path length constraint if applicable; and

use the default CA value (False) for EE certificates.

Processing Requirements

FPKI certificate processing entities shall:

reject processing of certificates issued by entities without the cA Boolean flag set to ìTrueî (except for self-signed certificates);

impose the pathLenConstraint field, if present; and

treat the certificate as an EE if this extension is not present.

nameConstraints

This critical extension, which is for use only in CA certificates, indicates a name space within which all subject names in a subsequent certification path must be located. Though this extension is not required in all CA certificates, it is recommended that name constraints be employed to the fullest possible extent.

Generation Requirements

FPKI CAs shall:

include this extension in applicable CA certificates;

not include this extension in the self-signed certificate;

set the criticality flag to ìtrueî;

include the permittedSubtrees and excludedSubtrees fields as required;

only choose the directoryName for the base GeneralName; and

include the appropriate integer in the minimum and maximum fields of GeneralSubtree to indicate the name space as required.

Processing Requirements

FPKI certificate processing entities shall:

reject the certificate if the nameConstraints extension is flagged critical and the GeneralSubtree base GeneralName in the NameConstraints extension is other than directoryName; and.

ignore the name forms if the nameConstraints extension is flagged non-critical and the GeneralSubtree base GeneralName in the nameConstraints extension is other than directoryName.

policyConstraints

This extension specifies constraints which may require explicit certificate policy identification or inhibit policy mapping for the remainder of the certification path. It may be implemented as either a critical or a non-critical extension.

Generation Requirements

FPKI CAs shall:

set the criticality flag to ìtrueî;

include this extension in applicable CA certificates;

not include this extension in the self-signed certificates;

include the requireExplicitPolicy field as applicable; and

include the inhibitPolicyMapping field as applicable.

Processing Requirements

FPKI certificate processing entities shall use the policyConstraints information during the certification path validation process as described in Section 1.4

cRLDistributionPoints

This extension identifies the CRL distribution point or points to which a certificate user should refer to ascertain if the certificate has been revoked. It may be implemented as either a critical or a non-critical extension. This extension provides a mechanism to assemble a CRL that contains certificates revoked for specific reason codes. This extension is used to create a CRL containing certificates revoked for the reasons keyCompromise or cACompromise. For the purposes of this document, this CRL is called an Indirect CRL (ICRL).

Generation Requirements

FPKI CAs shall:

set the criticality flag to ìfalseî;

include this extension in CA and EE certificates; and

not include this extension in self-signed certificates.

Processing Requirements

FPKI certificate processing entities shall implement CRL Distribution Point processing as described in Recommendation X.509.

If a certificate processing entity cannot process this extension and the extension is indicated as critical, then the certificate shall be rejected.

Certificate Path Development

Certification path development and path validation procedures work closely together. The most efficient way to develop a path is to start at the end-entity and build a certificate chain back towards the userís trusted CA.

In contrast, as defined by the X.509 standard and DAM, policy constraint, name constraint, signature verification, and parameter-oriented processing must be done in the direction of trust, i.e., from the trusted CA to the end entity. The direction of trust is always the same regardless of how a path is developed: one must find a set of certificates that provide a chain of trust from the trusted CA to the end entity.

Thus, the path development objective is to find a path and provide it to the path validation function. The path validation function must either identify the path as valid, or it must identify where the path fails. The path development module should use that information to attempt to find alternate paths, e.g., search for cross-certificates.

Path Development Procedures

The specific approach to developing a certificate path is an implementerís option. One approach to developing a certification path is provided here. A certification path may be developed, beginning with the subject end entity and terminating at the trusted CA in the following manner, by querying the X.500 Directory for the requisite certificates:

1.	Query for the EE signature certificate by creating a certicate request with the following settings:

subject DN = end entity DN

keyUsage = bit set for digital signature (if signature verification is required), or key encipherment or key agreement (if a PRBAC check or key exchange is required)

certificateValid = current date and time in ZULU

subjectKeyIdentifier if known (e.g., from the MSP message received)

pathToName equal to the end entity name

attribute = user certificate�

2.	Issue the certificate request, and obtain the certificate. If no certificate is available, then stop. Attempt to identify alternative certificate chain, e.g. search for cross-certificates.

3.	If the issuer DN in the certificate equals the trusted CA, then stop; path development is complete; else go to step 4.

4.	Query for the issuerís signature certificate by creating a certificate request with the following settings:

subject DN = issuer DN in certificate

attribute = ca certificate

subjectKeyIdentifier = issuer key identifier in the certificate

keyUsage = bit set for digital signature

Go to step 2.

Each certificate request may result in one or more certificates being returned to the application. The application will stack the results of each query, but follow only one path at a time. Path discovery may require attempting alternative paths during the path development, or as a result of path validation.

Certification Path Processing Procedure

The certification path processing procedures for public key certificates is described in detail in Recommendation X.509, Section 12.4. This section provides certification path processing requirements beyond those of Recommendation X.509.

The following inputs to the certification path processing procedure are described in section 12.4 of X.509:

a)	an initial-explicit-policy indicator value, which indicates if an acceptable policy identifier needs to explicitly appear in the certificate policies extension field of all certificates in the path; this value shall be set to ìtrueî;

b)	an initial-policy-mapping-inhibit indicator value, which indicates if policy mapping is forbidden in the certification path; this value shall be set to ìfalseî;

The following certification path processing checks are in addition to those described in Section 12.4 of X.509, and shall be applied to a certificate:

a)	The application must verify that each certificate serial number does not appear on the certificate issuerís CRL (or CRL indicated by CRL Distribution Point extension, especially the ICRL indicated by the CRL Distribution Point with ReasonFlag set to keyCompromise or caCompromise). If the date falls outside the validity interval, the user shall be notified which certificate is outside the interval and when the certificate was, or will be valid, as well as warned that the certificate may have been revoked and given the option to proceed with the data processing. Real-time protocols (e.g. web page access) shall never be permitted to process expired certificates. Note that the PAA certificate validity period is not checked. The notification of an expired certificate (for non-realtime protocols) shall at a minimum :

List all expired certificates in the certificate chain.

Explicitly state that the certificate(s) is/are expired.

Explicitly state that the certificate(s) may have been revoked, and that the certificate will not appear on current CRLs even if the certificate has been revoked.

Explicitly state that the signature applied to the entity being verified may not be valid. Verification of signatures using expired certificates requires the assistance of the originatorís CA.

Require positive user action to acknowledge the warning message (i.e. clicking an on-screen OK button) before data processing continues.

b)	for an intermediate certificate, the basic constraints extension must be present in the certificate and the cA component must be set to true. (Certificates issued by entities without the Basic Constraints Extension present and the cA component set to true shall be rejected - See section 1.2.10.2.) If the pathLenConstraint component is present, check that the current certification path does not violate that constraint;

c)	Ignore the issuerUniqueIdentifier and subjectUniqueIdentifier fields if present in the base certificate;

d)	Check that both the subject and issuer fields of the base certificate contain a distinguished name that is not empty (i.e. must include at least one RelativeDistinguishedName);

e)	Check that the subject name located in the subjectAltName extension is within the name-space given by the value of permitted-subtrees and is not within the name-space given by the value of excluded-subtrees; and

f) 	If the keyUsage extension is present and is flagged critical, verify that the keyCertSign bit is set.

�Version 2 CRLs

CAs use CRLs to revoke a subjectís certificate. The CRLs are stored in the directory as attributes and are checked by users to verify that the other usersí certificates are not revoked. The fields in a CRL identify the issuer (i.e., CA), the date the current CRL was generated, the date the next CRL will be generated, and the revoked usersí certificates. A CA may also add extensions that contain additional information about a specific entry or extensions about the entire CRL (see section 2.1).

As a subset of the CRL, a separate ICRL is generated that contains only certificates with the reason code value of keyCompromise or cACompromise. A single ICRL is issued by a special purpose CA responsible for managing certificates within the Root-CA domain. The ICRL consolidates all ìkey compromiseî CRLs issued by the Root-CAs and CAs within the Root-CA domain (and, optionally, cross-certified domains).

Figure 2-1 illustrates the association between certificate extensions, CRL extensions, and CRL entry extension. The X.509 certificate may contain a CRL Distribution Point extension which includes a field, CRL Issuer. The CRL Distribution Point identifies where to find a CRL for the certificate. The CRL Issuer field identifies the CA that signs the CRL (if other than the issuing CA), and is only applicable if the CRL is an Indirect CRL. The CRL Issuer field must be the same as the Issuer field of the CRL identified by the CRL Distribution Point. Since the CRL is actually an ICRL, the Indirect CRL component of the CRL extension, Issuing Distribution Point, must be set to ìtrueî. Finally, the CRL entry extension, Certificate Issuer, may be applied to revoked certificates on an ICRL. This entry extension indicates the CA that issued the revoked certificate. If this extension is omitted in an ICRL, the certificate issuer is ìinheritedî from the issuer of the previous revoked certificate appearing on the list.

Certificates remain on the CRL and ICRL one inclusion interval beyond their expiration date. The CRL shall use the syntax of the CertificateList as defined in the 1993 X.509 Specification as amended by the Technical Corrigendum (TC for DR128), with CRL and CRL Entry extensions defined in the X.509 Amendment 1. FPKI is using the CertificateList (i.e. V2 CRL) to revoke both user and CA certificates.

CAs may optionally supplement the CRL based revocation mechanisms with on-line revocation mechanisms as specified in the Federal Public Key Concept of Operations.

 �

Figure 2-1. Relationship of Certificate, CRL and CRL Entry Extensions

FPKI CAs shall generate and sign CRLs/ICRLs that:

include the version field to indicate that it is a V2 CRL.

include the signature field to indicate the algorithm used to certify the CRL (if parameters are associated with the signature algorithm, those parameters shall not be included);

include use of the Parameterized Type (if parameters are associated with the signature algorithm, those parameters shall not be included);

include the issuer field to indicate the distinguished name of the CRL issuer;

include the thisUpdate field to indicate when the CRL was generated;

include the nextUpdate field to indicate when the next CRL update will be generated, if a scheduled time is known;

include the revokedCertificates field containing the sequence(s) of userCertificates (which may identify user or CA certificates) field(s), revocationDate field(s), and crlEntryExtensions field(s) to indicate the serial number of each revoked certificate, the time when it was revoked, and the entry extensions (as described in Sections 2.1.4 through 2.1.7); and

include crlExtensions field(s) as specified in Sections 2.1.1, 2.1.2, 2.1.3. 2.1.8, and 2.1.9.

The following shall apply to both the CRL and ICRL unless stated otherwise. FPKI certificate processing entities shall:

verify the signature on the CRL/ICRL by employing the public key from the issuerís certificate and parameters, if applicable. If the CRL signature is invalid, the user shall be notified which CRL is invalid and instructed to obtain a new CRL. If a valid CA CRL cannot be obtained, then the user will be given the option to proceed without a valid CRL and without using the invalid CRL;

verify the certification path of the CRL issuerís signature certificate;

verify that the version is V2;

verify the present time falls within the thisUpdate and nextUpdate field(s), if present;

if present the cRLNumber is present, verify that it is greater than that of the last CRL that the user possesses;

verify that the CRL issuer is the issuer of the certificate (or as indicated by the CRL Distribution Point extension);

verify that the subject name in the CRL issuerís X.509 certificate matches the CRL issuerís name and the CRL issuerís certificate BasicConstraints extension CA flag is set to ìtrueî.

if the KeyUsage extension is present in the CRL issuerís certificate and is flagged critical, verify that the keyUsage cRLSign bit is set to 1;

check whether the certificate serial number appears on the CRL or ICRL. If the certificate appears on either list, and if no reasonCode exists, or a reasonCode exists and is either unspecified, affiliationChanged, superseded, or cessationOfOperation, notify the user of which certificate is on the CRL/ICRL and allow the option to proceed with message processing. If the reasonCode is keyCompromise or certificateHold, the user shall be notified and the certificate shall be rejected thereby halting all associated processing. If a certificate that appears on the CRL/ICRL is a CA certificate, regardless of the reasonCode, the user shall be notified and the certificate shall be rejected thereby halting all associated processing.

verify that the CA bit is set in the basicConstraints field of the issuerís certificate;

for ICRLs only, determine if a certificate is revoked by attempting to match the certificateís serial number and issuer with an ICRL entryís serial number and certificateIssuer extension (or value inherited from previous certificateIssuer field as described in the X.509 Draft Amendment 9594-8); and

for ICRLs only, verify that the cRLIssuer field for the cRLDistributionPoints extension matches the issuer field of the ICRL.

If a current CRL is not available, then the user shall be notified when the CRL was valid, recommended to obtain a new CRL from the Directory, and given the option to proceed with the out of date CRL (signature must still be checked).

The notification at a minimum shall:

list all expired CRLís in the certificate chain;

explicitly state that the signature applied to the entity being verified may not be valid; 	verification of signatures using expired CRLís requires the assistance of the originatorís CA;

require positive user action to acknowledge the warning message (i.e. clicking on an on-screen ìOKî button) before message processing continues; and

If the expired CRL contains the issuingDistributionPoint extension with the reason flags of 	the onlySomeReasons element set to ìkeyCompromiseî of ìcACompromiseî, then the certificate shall be rejected and message processing halted because the expired CRL is used 	to list the certificates in which the key has been compromised.

CRL Extensions

The following sections describe the standard CRL extensions and CRL entry extensions. The CRL extensions add information about the CRL and the CRL issuer, and provide mechanisms to control the size of the CRLs. The CRL entry extensions add information about a specific entry within the CRL.

authorityKeyIdentifier

This non-critical extension identifies the public key to be used to verify the signature on this CRL. It enables distinct keys used by the same CA to be differentiated. This extension may hold the explicit key identifier or an explicit certificate identifier. This extension is useful when a CA uses more than one key (e.g., when the CA key is updated due to crypto-changeover).

FPKI CAs shall:

include this extension in all CRLs;

include the authorityKeyIdentifier octet string with a unique identifier for the CAís key material (the subject key identifier of the issuerís certificate); and

omit the authorityCertIssuer and authorityCertSerialNumber fields.

There are no requirements for FPKI implementations to process this extension, though it is encouraged that CRL processing entities be capable of recognizing the authorityKeyIdentifier field as the identifier of the certification authorityís key used to sign the CRL.

issuerAltName

This CRL extension provides a name, in a form other than that of distinguished name, for the CRL issuer. It may be implemented as either a critical or a non-critical extension.

FPKI CAs shall:

set the criticality flag to ìfalseî;

generate this extension as applicable; and

be capable of populating GeneralName with types dNSName or uniformResourceIdentifier.

FPKI CRL processing entities shall:

reject any CRL if this extension is present, marked critical and does not contain directorynames; and

if this extension is present and marked non-critical, it need not contain directorynames.

CRLNumber

This non-critical CRL extension conveys a monotonically increasing sequence number for each CRL issued by a given CA through a given CA directory attribute or CRL distribution point directory attribute. Support of this extension is optional.

reasonCode

This non-critical CRL entry extension identifies the reason for the certificate revocation. The user can then decide, based on the reason for revocation, how much trust to place in the certificate.

FPKI CAs that generate this extension shall include CRLReason bits for unspecified, key compromise, CA compromise, affiliation change, superseded, and cessation of operation.

There are no requirements for FPKI implementations to perform any automated processing of this extension.

holdInstructionCode

This non-critical CRL entry extension provides for inclusion of a registered instruction identifier to indicate the action to be taken after encountering a held certificate. FPKI CAs and certificate processing entities are not required to support this extension.

invalidityDate

This non-critical CRL entry extension indicates the date at which it is known or suspected that the private key was compromised or that the certificate should otherwise be considered invalid. This date may be earlier than the revocation date in the CRL entry, which is the date at which the CA processed the revocation. FPKI shall use this extension to identify the date at which the certificate should be considered invalid, as per the reasonCode described in Section 2.1.4.

FPKI CAs that generate this extension shall include the date at which the certificate was suspected or known to be invalid.

There are no requirements for FPKI implementations to perform any automated processing of this extension.

certificateIssuer

This critical CRL entry extension identifies the certificate issuer associated with an entry in a CRL which has the indirectCRL indicator set. If this extension is not present on the first entry in an indirect CRL, the certificate issuer defaults to the CRL issuer. On subsequent entries in an indirect CRL, if this extension is not present, the certificate issuer for the entry is the same as that for the preceding entry.

FPKI CAs shall generate this extension only for ICRL entries, and shall include for the GeneralName the directoryName of the certificate issuer as it appears in the ìissuerî Name field of the revoked certificate.

FPKI CRL processing entities shall if this extension is present, verify that the certificateIssuer GeneralName matches the ìissuerî field of the certificate, and if it does not, then reject the CRL.

issuingDistributionPoint

This critical CRL extension identifies the CRL distribution point for this particular CRL, and indicates if the CRL is limited to revocations for end-entity certificates only, for CA-certificates only, or for a limited set of reasons only. This extension indicates that the CRL may contain entries from CAs other than the authority that signed and issued the CRL.

FPKI CAs shall generate this extension only for ICRLs and shall:

not populate the distributionPoint field;

use the default value of false for both onlyContainsUserCerts and onlyContainsCACerts fields;

set the onlySomeReasons field to ìkeyCompromiseî and ìcACompromIseî; and

set the indirectCRLfield to true.

FPKI CRL processing entities shall:

when processing an ICRL, verify that the onlySomeReasons field is set to ìkeyCompromiseî and ìcACompromIseî and verify that the indirectCRL field is set to True; and

if a certificateIssuer extension is present in a CRL entry, verify that the indirectCRL indicator is set to True in the issuingDistributionPoint extension of the CRL.

deltaCRLIndicator

This critical CRL extension identifies a CRL as being a delta-CRL only. A certificate user who does not understand this use of delta-CRLs should not use a CRL containing this extension, as the CRL may not be as complete as the user expects.

The FPKI has no requirements to support this extension.

� V3 Certificate And V2 CRL Profile

This section lists the protocol elements FPKI CAs must generate to add extensions to the certificate, and the protocol elements FPKI certificate processing entities must understand if the extension is to be processed properly. The lists are presented in tabular format with seven major column headings.

The ìItemî and ìRefî column are provided for cross-referencing. The numbers in the ìItemî column are the row numbers. The numbers in the ìRefî column indicate the table number (followed by a ì/î) and an ìItemî number. These two columns are used together to point to sub-elements.

The ìProtocol Elementî column refers to the name of the ASN.1 field taken from the X.500 standards or the X.509 amendment titled ìCertificate Extensions.î

The ìProc.î column indicates if processing of the element is mandatory or optional as dictated by the governing policy.

The ìSignature Certificateî column specifies the level of support required for each element within a digital signature certificate. The level of support contains the support classifications (see Section 3.1) required by compliant certificate processing entities who process certificates. The ìGenerationî column is divided into four certificate types: ìRootî, ìCAî, ìEEî, and ìCrossî. The information that is to appear in each type of certificate is identified within each respective column. The term ìCrossî refers to the profile for cross-certificates. When the CA acts as an End Entity (e.g., when a CA receives a message) then the Proc column applies.

The ìKM Certî column indicates if the extension or attribute is required to be included in Key Management certificates.

The ìNotesî column refers to additional information supplied at the end of the table.

Support Classification

Each of the protocol elements listed in sections 3.2 and 3.3 are designated as having a support requirement of mandatory or optional. Where protocol elements are nested (i.e., the elements contain sub-elements), the requirement to support the nested element is relevant only when the immediately containing (parent) element is supported.

To specify the support level of the certificate extensions the following terminology is defined.

Static Capability

The following classifications are used to specify static conformance (i.e., capability).

mandatory support (m) : Federally compliant certificate and CRL generation applications shall be able to generate the protocol element. Federally compliant certificate processing applications shall be able to receive the protocol element and perform all associated procedures (i.e., implying the ability to handle both the syntax and the semantics of the element) as relevant. Populating the information of this protocol element is an implementation detail based on policy decisions.

optional (o) : Federally compliant certificate and CRL generation applications are not required to support generation of the protocol element. If support is claimed (i.e., if the optional element is implemented), the element shall be treated as if it were specified as mandatory support, and the sub-elements, if present, shall be supported as specified (i.e., an optional element may have sub-elements indicated as mandatory, ìmî; this indicates that if the optional element is implemented, the sub-elements must also be implemented as specified). Federally compliant certificate processing applications shall ignore the protocol element and continue processing the certificate or CRL, unless the element is flagged ìcritical.î See Amendment 9594-8 to X.509 certificates for the rules concerning processing of critical extensions.

not applicable (-) : The element is not applicable in the particular context in which the classification is used.

Dynamic Behavior

The following classifications are used to specify dynamic conformance (i.e., behavior).

prohibited (x) : Federally compliant certificate and CRL generation applications shall verify that the element is never generated. Federally compliant certificate processing applications will generate and return an appropriate error if a prohibited element is encountered.

critical (k) : Federally compliant certificate and CRL processing applications shall, if the element is present in the certificate or CRL and not recognized by the certificate-using system, consider the certificate invalid. The element, if present in a CRL entry and not recognized by the certificate-using system, shall indicate to the user that the CRL may not be as complete as the user expects.

required (r) : the information for this protocol element must be populated upon certificate or CRL generation.

�Base Certificate

Item�Protocol Element�Proc.�Signature Certs.�KM Cert�Notes�Ref.�����Self-Signed�CA�EE�����1.�Certificate�m�mr�mr�mr�mr����2.�version�m�mr�mr�mr�mr����3.�serialNumber�m�mr�mr�mr�mr����4.�signature�m�mr�mr�mr�mr�1�3.2.1/1��5.�issuer�m�mr�mr�mr�mr����6.�validity�m�mr�mr�mr�mr����7.�notBefore�m�mr�mr�mr�mr����8.�notAfter�m�mr�mr�mr�mr����9.�subject�m�mr�mr�mr�mr����10.�subjectPublicKeyInfo�m�mr�mr�mr�mr����11.�algorithm�m�mr�mr�mr�mr�2�3.2.1/1��12.�subjectPublicKey�m�mr�mr�mr�mr����13.�issuerUniqueIdentifier�o�o�o�o�o�2���14.�subjectUniqueIdentifier�o�o�o�o�o�2���15.�extension�m�mr�mr�mr�mr��3.2.2/1��1. Population of the ìparametersî field on generation is PROHIBITED. Algorithm parameter processing shall be implemented as described in Appendix A.

2. Should not be populated; must be ignored if values are not understood.��Algorithm Identifier

Item�Protocol Element�Proc.�Signature Certs.�KM Cert�Notes�Ref.�����Self-Signed �CA�EE�����1.�AlgorithmIdentifier���������2.� algorithm�m�mr�mr�mr�mr����3.� parameters�m�mr�m�m�m����

�Extensions

Item�Protocol Element�Proc.�Signature Certs.�KM Cert�Notes�Ref.�����Self-Signed�CA�EE�����1.�Extensions�m�mr�mr�mr�mr����2.�Extension���������3.�extnID�m�mr�mr�mr�mr����4.�critical�m�mr�mr�mr�mr����5.�extnValue�m�mr�mr�mr�mr����Standard Extensions

Item�Protocol Element�Proc.�Signature Certs.�KM Cert�Notes�Ref.�����Self-Signed�CA�EE�����1.�authorityKeyIdentifier�o�o�mr�mr�mr�2�3.2.2.1.1/1��2.�subjectKeyIdentifier�o�mr�mr�mr�mr�2�3.2.2.1.1/15��3.�keyUsage�m�o�kmr�kmr�kmr��3.2.2.1.1/16��4.�privateKeyUsagePeriod�o�o�o�o�-��3.2.2.1.1/24��5.�certificatePolicies�m�o�mr�mr�mr��3.2.2.1.1/27��6.�policyMappings�m�o�m�-�-�1�3.2.2.1.1/34��7.�subjectAltName�m�o�m�m�m��3.2.2.1.1/39��8.�issuerAltName�m�o�m�m�m��3.2.2.1.1/39��9.�subjectDirectoryAttributes�o�o�o�o�o�4���10.�basicConstraints�m�mr�kmr�kmr�o��3.2.2.1.1/51��11.�nameConstraints�m�o�km�-�-�3�3.2.2.1.1/54��12.�policyConstraints�m�o�km�-�-��3.2.2.1.1/71��13.�cRLDistributionPoints�m�o�m�m�m��3.2.2.1.1/76�� 1. All cross-certificates are not required to have a policy mapping extension because there is a possibility that no policy mapping is required.

 2. Though not mandatory, this extension is recommended for certificate generation and processing.

 3. Population of this extension is encouraged to the fullest extent possible.

 4. This extension may be used to implement access control as described in SDN.706.��

Standard Extension Syntax

Item�Protocol Element�Proc.�Signature Certs.�KM Cert�Notes�Ref.�����Self-Signed�CA�EE�����1.�AuthorityKeyIdentifier������2.� keyIdentifier�m�mr�mr�mr�mr�7���3.� authorityCertIssuer�o�o�o�o�o����4.�GeneralName���������5.�otherName�o�o�o�o�o����6.�rfc822Name�o�o�o�o�o����7.�dNSName�o�o�o�o�o����8.�x400Address�o�o�o�o�o����9.�directoryName�m�m�m�m�m����10.�ediPartyName�o�o�o�o�o����11.�uniformResourceIdentifier�o�m�m�m�m����12.�iPAddress�o�o�o�o�o����13.�registeredID�o�o�o�o�o����14.� authorityCertSerialNumber�o�o�o�o�o����15.�SubjectKeyIdentifier�m�mr�mr�mr�mr����16.�KeyUsage�������17.� digitalSignature�m�m�m�mr�-����18.�	nonRepudiation�m�m�m�m�-����19.�	keyEncipherment�m�-�-�-�m����20.�	dataEncipherment�m�-�-�-�m����21.�	keyAgreement�m�-�-�-�m����22.�	keyCertSign�m�mr�m�-�-����23.�	cRLSign�m�m�m�-�-����24.�PrivateKeyUsagePeriod�������25.�	notBefore�m�m�m�m�-�5���26.�	notAfter�m�m�m�m�-�5���27.�PolicyInformation�������28.�policyIdentifier�m�mr�mr�mr�mr�1���29.�CertPolicyId���������30.�policyQualifiers�m�m�m�m�m����31.�PolicyQualifierInfo���������32.�policyQualifierId�m�mr�mr�mr�mr�6���33.�qualifier�m�o�o�o�o����34.�PolicyMappingsSyntax�������35.�issuerDomainPolicy�m�mr�mr�-�-����36.�CertPolicyId������2���37.�subjectDomainPolicy�m�-�m�-�-����38.�CertPolicyId���������39.�GeneralName�������40.�otherName�o�o�o�o�o����41.�rfc822Name�o�o�o�o�o����42.�dNSName�o�o�o�o�o����43.�x400Address�o�o�o�o�o����44.�directoryName�m�m�m�m�m����45.�ediPartyName�o�o�o�o�o����46.�nameAssigner�o�o�o�o�o����47.�partyName�o�mr�mr�mr�mr�4���48.�uniformResourceIdentifier�o�m�m�m�m����49.�iPAddress�o�o�o�o�o����50.�registeredID�o�o�o�o�o����51.�BasicConstraintsSyntax�������52.�cA�m�mr�mr�mr�o�d(false)���53.�pathLenConstraint�m�o�m�-�o����54.�NameConstraintsSyntax�������55.�permittedSubtrees�m�mr�mr�-�-����56.�GeneralSubtree�������57.�base�m�mr�mr�-�-�3���58.�GeneralName���������59.�otherName�o�o�o�o�o����60.�rfc822Name�o�o�o�o�o����61.�dNSName�o�o�o�o�o����62.�x400Address�o�o�o�o�o����63.�directoryName�m�m�m�m�m����64.�ediPartyName�o�o�o�o�o����65.�uniformResource

Identifier�o�m�m�m�m����66.�iPAddress�o�o�o�o�o����67.�registeredID�o�o�o�o�o����68.�minimum�m�o�o�-�-�d(0), 2���69.�maximum�m�o�o�-�-����70.�excludedSubtrees�m�m�m�-�-��3.2.2.1.1/56��71.�PolicyConstraintsSyntax�������72.�requireExplicitPolicy�m�m�m�-�-����73.�SkipCerts���������74.�inhibitPolicyMapping�m�m�m�-�-����75.�SkipCerts���������76.�CRLDistPointsSyntax�������77.�distributionPoint�m�o�o�o�o����78.�DistributionPointName�m�o�o�o�o����79.�fullName�m�o�o�o�o����80.�GeneralName���������81.�otherName�o�o�o�o�o����82.�rfc822Name�o�o�o�o�o����83.�dNSName�o�o�o�o�o����84.�x400Address�o�o�o�o�o����85.�directoryName�m�m�m�m�m����86.�ediPartyName�o�o�o�o�o����87.�uniformResource

Identifier�o�m�m�m�m����88.�iPAddress�o�o�o�o�o����89.�registeredID�o�o�o�o�o����90.�nameRelativeToCRLIssuer�m�o�o�o�o����91.�reasons�������92.�ReasonFlags�������93.�unused�o�o�o�o�o����94.�keyCompromise�m�m�m�m�m����95.�cACompromIse�m�m�m�m�m����96.�affiliationChanged�m�o�o�o�o����97.�superseded�m�o�o�o�o����98.�cessationOfOperation�m�o�o�o�o����99.�certificateHold�m�o�o�o�o����100.�cRLIssuer�m�m�m�m�m����101.�GeneralName���������102.�otherName�o�o�o�o�o����103.�rfc822Name�o�o�o�o�o����104.�dNSName�o�o�o�o�o����105.�x400Address�o�o�o�o�o����106.�directoryName�m�m�m�m�m����107.�ediPartyName�o�o�o�o�o����108.�uniformResource

Identifier�o�m�m�m�m����109.�iPAddress�o�o�o�o�o����110.�registeredID�o�o�o�o�o����1. If the requireExplicitPolicy field is present in the policyConstraints extension, this field shall include at least one of the policies applicable to the certificate.

2. The minimum attribute is always required to be present if the extension is included in the certificate.

3. Although the nameConstraints extension is not always required to be present in a certificate, the base attribute is always required to be present if tnameConstraints is present.

4. Note that partyName is required to be present if ediPartyName is included in the certificate.

5. One or both of the notBefore and notAfter elements shall be present in this extension.

6. The supported policyQualifier processes are id-pkix-cps and id-pkix-unotice.

7. PolicyQualifierId shall be present if policyQualifierInfo is included in the certificate.

8. If the AuthorityKeyIdentifier is present, then keyIdentifier is required to be present.��CRL

Item�Protocol Element�Proc.�Required Support �Notes�Ref.��������� 1.�CertificateList������2.�version�m�mr����3.�signature�m�mr��3.2.1/1��4.�issuer�m�mr����5.�thisUpdate�m�mr����6.�nextUpdate�m�m����7.�revokedCertificates�m�mr����8.�userCertificate�m�mr��3.2/5��9.�revocationDate�m�mr����10.�crlEntryExtensions�m�mr��3.3.2.1��11.�crlExtensions�m�mr��3.3.1��CRL Extensions

Item�Protocol Element�Proc.�Required Support �Notes�Ref.���������1.�authorityKeyIdentifier�o�mr��3.2.2.1/1��2.�issuerAltName�m�m��3.2.2.1/8��3.�cRLNumber�o�o��3.3.1.1/1��4.�issuingDistributionPoint�m�km��3.3.1.1/2��5.�deltaCRLIndicator�o�o��3.3.1.1/8��

�CRL Extension Syntax

Item�Protocol Element�Proc.�Required Support�Notes�Ref.���������1.� CRLNumber�m�m����2.�IssuingDistPointSyntax�m�m����3.�distributionPoint�m�m��3.2.2.1.1/76��4.�onlyContainsUserCerts�m�m�d(false)���5.�onlyContainsCACerts�m�m�d(false)���6.�onlySomeReasons�m�m��3.2.2.1.1/91��7.�indirectCRL�m�m�d(false)���8.�BaseCRLNumber�m�m�1���1.	The value of this element shall be identical to the value in the cRLNumber extension of the base certificate.��CRL Entry Extensions

Item�Protocol Element�Proc.�Required Support�Notes�Ref.���������1.�reasonCode�o�m��3.3.2.1/1��2.�holdInstructionCode�o�o����3.�invalidityDate�o�m����4.�certificateIssuer�m�km����

CRL Entry Extension Syntax

Item�Protocol Element�Proc.�Required Support�Notes�Ref.��������� 1.�CRLReason������2.�unspecified�m�m����3.�keyCompromise�m�m����4.�cACompromise�m�m����5.�affiliationChanged�m�m����6.�superseded�m�m����7.�cessationOfOperation�m�m����8.�certificateHold�m�m����9.�removeFromCRL�o�o�����APPENDIX A DSA Parameter Processing

The DSA algorithm has optional parameters associated with its syntax which are commonly referred to as p, q, and g. The AlgorithmIdentifier field of subjectPublicKeyInfo is the only place in V3 X.509 certificates in which algorithm parameters will be present. If the DSA algorithm parameters are absent from the subjectís DSA X.509 certificate, then the certificate issuerís DSA parameters apply. This strategy validates certificate chains in which all certificates were generated in accordance with the inheritance strategy. The validation strategy will fail validation for certificate chains containing certificates that were generated by certification authorities that did not implement this inheritance strategy.

FPKI CAs shall not populate the parameters in the signature field of the base certificate or in the SIGNED macro in the certificates or the CRLs.

Signatures shall be verified using the algorithm and parameters associated with an ìalgorithm state variableî and a ìparameters state variable.î The following rules describe how these state variables shall be determined and processed during certification path validation:

The algorithm state variable and parameters state variable will be initialized to the algorithm and parameters, respectively, of the subjectPublicKeyInfo AlgorithmIdentifier field of the userís Root-CA signature certificate.

For each certificate, the algorithm state variable must be equal to the values in the signature field and in the SIGNED macro. If all three are not equal, the certificate is rejected and another certificate path should be sought. If no alternate certification path can be found, the path validation fails.

The signature field and SIGNED macro will not be populated with parameters in certificates generated by FPKI compliant Cas. If parameters are populated in either of these fields, then they must be verified to be identical to the parameters state variable. If a certificate is encountered which has parameters in the signature field or the SIGNED macro which are not identical to the parameters state variable, then the certificate is rejected, and an alternate certificate path should be sought. If no alternate certificate path can be found, the path validation fails.

If the algorithm state variable is different from the value of algorithm in the subjectPublicKeyInfo field of the certificate, the algorithm state variable will be set to equal the algorithm identifier in the subjectPublicKeyInfo field of the certificate, and the parameters state variable will be set to ìnullî.

If the subjectPublicKeyInfo field of the certificate contains public key parameters, the parameters state variable will be set to equal the parameters of the subjectPublicKeyInfo field of the certificate. The process will be repeated from step 2 onward until the last certificate in the chain is validated.

The public key parameter values at the end of a successful chain validation are the parameters to be used to verify the end entity signatures. Before validating the issuer's signature of a CRL or ICRL, the issuer's certification path must be validated using the certification path validation rules described in steps one through six, above. The CRL issuer's DSA parameters are used as part of the CRL signature verification process. Specifically, any DSA parameters populated in CRL and ICRL signature fields or the SIGNED macros shall never be used as cryptographic algorithm inputs.

�APPENDIX B Key Encryption Algorithm Certificate Processing

The parameters p, q, and g will never appear in a FPKI-compliant Key Encryption Algorithm (KEA) certificate. FPKI CAs shall populate the parameters field of the AlgorithmIdentifier within the subjectPublicKeyInfo field of each KEA certificate with an 80-bit parameter identifier (OCTET STRING), also known as the domain identifier. The domain identifier will be computed first by generating a 160-bit SHA-1 hash of the KEA parameters encoded using the DSAParameters syntax. The 160-bit hash will then be reduced to 80-bits by performing an ìexclusive orî of the 80 high order bits with the 80 low order bits.

A KEA pairwise key cannot be generated between two users who use public keys generated with different KEA parameters. FPKI compliant certificate using applications have the option of checking the domain identifier for parameter compatibility before attempting to generate a pairwise KEA key, but this check is not required. If a FPKI compliant certificate using application encounters an error when attempting to generate a pairwise key using KEA, then the processing entity may optionally determine if the domain identifiers in the originator's and recipient's KEA X.509 certificate are identical. If they are different, then the application should notify the application user that the KEA key used by the remote participant was generated using incompatible KEA parameters.

� A value 0 in the version field indicates a version 1 certificate and a value of 1 indicates a version 2 certificate.

� This attribute may be set to ìca certificateî if subject certificate is that of a CA.

�PAGE �

		TWG 97-39

� PAGE �ii�

� PAGE �33�

A-� PAGE �2�

B-� PAGE �1�

